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Density-Functional Theory

Transforms the many-electron problem into an equivalent problem of (fictitious)
non-interacting electrons, the Kohn-Sham equations:

HKSψv ≡

(
− h̄

2

2m
∇2 + VKS(r)

)
ψv(r) = εvψv(r)

The effective potential is a functional of the charge density:

VKS(r) = V (r) + v[n(r)], n(r) =
∑
v

|ψv(r)|2

(Hohenberg-Kohn 1964, Kohn-Sham 1965). The sum is over occupied states only.
V (r) is the external potential on the system (the bare potential of the nuclei).

The exact form of v[n(r)] is unknown, but approximate functionals yielding good
results for the ground state of many materials are known. Less simple “advanced”
functionals allow to deal with difficult cases and to obtain even better results.



Density-Functional Theory II

The electronic energy is a functional of the charge density and is written as:

E[{ψ}] = − h̄
2

2m

∑
v

∫
ψ∗v(r)∇2ψv(r)dr +

∫
V (r)n(r)dr +

+
e2

2

∫
n(r)n(r′)

|r− r′|
drdr′ + Exc[n(r)]

Kohn-Sham equations arise from the minimization of the energy functional:

E = min
ψ
E[{ψ}],

∫
ψ∗i (r)ψj(r)dr = δij

The functional v[n(r)] can thus be written as

v(r) = e2
∫

n(r′)

|r− r′|
dr′ +

δExc
δn(r)

≡ VH(r) + Vxc(r).

The second term above is called exchange-correlation potential.



Density-Functional Theory in practice

• Expanding the Kohn-Sham orbitals into a suitable basis set turns Density-
Functional Theory into a multi-variate minimization problem, and the Kohn-
Sham equations into a non-linear matrix eigenvalue problem

• The use of pseudopotentials allows one to ignore chemically inert core states
and to use plane waves

• Plane waves are orthogonal and the matrix elements of the Hamiltonian are
usually easy to calculate; the completeness of the basis is easy to check

• Plane waves allow to efficiently solve the diagonalization problem and to solve
the Poisson equation using iterative techniques, matrix-vector products, Fast
Fourier Transforms (FFTs)

(NB: Other approaches based on different basis sets and all-electron atoms exist)



Density-Functional Perturbation Theory

Let us assume that the external potential depends on some parameter λ

Vλ(r) ' V (r) + λ
∂V (r)

∂λ
+

1

2
λ2
∂2V (r)

∂λ2
+ ...

(all derivatives calculated at λ = 0) and expand the charge density

nλ(r) ' n(r) + λ
∂n(r)

∂λ
+

1

2
λ2
∂2n(r)

∂λ2
+ ...

and the energy functional into powers of λ:

Eλ ' E + λ
∂E

∂λ
+

1

2
λ2
∂2E

∂λ2
+ ...

The first-order derivative ∂E/∂λ does not depend on any derivative of n(r)
(Hellmann-Feynman theorem):

∂E

∂λ
=

∫
n(r)

∂V (r)

∂λ
dr



Energy functional expansion terms

The second-order derivative ∂2E/∂λ2 depends on the first-order derivative of the
charge density, ∂n(r)/∂λ:

∂2E

∂λ2
=

∫
∂V (r)

∂λ

∂n(r)

∂λ
dr +

∫
n(r)

∂2V (r)

∂λ2
dr

The result can be generalized to mixed derivatives:

∂2E

∂λ∂µ
=

∫
∂V (r)

∂λ

∂n(r)

∂µ
dr +

∫
n(r)

∂2V (r)

∂λ∂µ
dr

(the order of derivatives can be exchanged)

In general, the (2n+ 1)−th derivative of energy depends only on derivatives up to
order n of the charge density ((2n+ 1) theorem) due to its variational character.

∂n/∂λ can be calculated either by the self-consistent procedure shown below, or
by direct minimization of the 2nd-order energy, written as a functional of ∂n/∂λ.



Self-consistent Linear Response

The basic DFT equations for the linear response to a perturbation δV are:

δVKS(r) = δV (r) + e2
∫

δn(r′)

|r− r′|
dr′ +

∫
δVxc(r)

δn(r′)
δn(r′)dr′

δn(r) = 4Re
∑
v

ψ∗v(r)Pc
1

εv −HKS
PcδVKSψv,

where Pc is the projector over the empty-state manifold.
The variation of the charge density can be recast into the form

δn(r) = 4Re
∑
v

ψ∗v(r)∆ψv(r), where ∆ψv = Pc
1

εv −HKS
PcδVKSψv

∆ψv can be obtained from the solution of a linear equation:

(εv −HKS)Pc∆ψv = PcδVKSψv.

The above equations define a self-consistent procedure that can be solved by
iteration, much in the same way as in the solution of KS equations.



Normal vibrational modes in crystals and molecules

Harmonic approximation: the interatomic potential energy is expanded to 2nd
order. The resulting Hamiltonian transforms into a sum of independent oscillators.

Normal mode frequencies, ω, and displacement patterns, UαI for cartesian
component α of atom I, at atomic position RI, are determined by the secular
equation: ∑

J,β

(
CαβIJ −MIω

2δIJδαβ

)
UβJ = 0,

where CαβIJ is the matrix of inter-atomic force constants (IFC), i.e. second
derivatives of the (total) energy with respect to atomic positions:

CαβIJ ≡
∂2E({R})
∂RαI ∂R

β
J

.

In crystals, normal modes are classified by a wave-vector q. Phonon frequencies,
ω(q), and displacement patterns, Uαs (q), are determined by the secular equation:∑

t,β

(
C̃αβst (q)−Msω

2(q)δstδαβ

)
Uβt (q) = 0



Calculation of phonon spectra

Introduce monochromatic perturbation u to atomic positions RI = Rl + τττ s as

RI[us(q)] = Rl + τττ s + us(q)eiq·Rl.

(Rl =lattice vector, τττ s =equilibrium position of the s-th atom in the unit cell).

Fourier transforms of force constants at q are second derivatives of the energy with
respect to such monochromatic perturbations:

C̃αβst (q) ≡
∑
R

e−iq·RCαβst (R) =
1

Nc

∂2E

∂u∗αs (q)∂uβt (q)

(Nc number of cells in crystal). These can be computed knowing the linear
response ∂n(r)/∂uαs (q) and diagonalized to get phonon modes at q. Note that:

• the linear response has the same wave vector q of the perturbation: this
algorithm will work for any q without any supercell involved

• in the spirit of adiabatic approximation, one can use static response.



Phonons and macroscopic electric fields

Polar materials in the q=0 (long-wavelength) limit: a macroscopic (finite and
constant) electric field is present. Gives raise to observable TO-LO splitting.
Macroscopic electric field incompatible with Periodic Boundary Conditions! Must
be separately treated.

Phenomenological expression for the energy as a function of atomic displacements,
us, and of macroscopic electric field, E (Born and Huang long-wavelength limit):

E({u},E) =
1

2

∑
st

∑
αβ

us · anC̃st · ut −
Ω

8π
E · εεε∞ · E− e

∑
s

us · Z?s · E,

(anC̃st force constants, εεε∞ dielectric tensor, Z?s Born effective charge tensor).

Under which circumstances is an electric field E generated by atomic displacements
u? Which consequences does it have? The answer comes from electrostatics.



Phonons and macroscopic electric fields (2)

Let us consider electric induction D = E + 4πP (where P is the polarization):

D = E + Pel + Pion = εεε∞ · E +
4π

Ω
e
∑
s

us · Z?s

Maxwell equations tell us q · D = 0 and q× E = 0 =⇒ E = q(q · E), hence

E = −4πe

Ω

∑
t

q(q · Z?tut)
q · ε∞ · q

and

E({u}) =
1

2

∑
st

∑
αβ

us · C̃st · ut, C̃st = anC̃st + naC̃st

where
naC̃st =

4π

Ω

(q · Z?s)α (q · Z?t)β
q · ε∞ · q

A ”non-analytical” term has appeared in the force constants!



Effective charges and dielectric tensor

Effective charges Z? are related to polarization P induced by a lattice distortion:

Z?αβs =
Ω

e

∂Pα

∂uβs (q = 0)
.

Dielectric tensor εαβ∞ are related to polarization induced by an electric field E:

εαβ∞ = δαβ + 4π
∂Pα
∂Eβ

∣∣∣∣
us(q=0)=0

.

One can observe that such quantities are second derivatives of the energy as well:

Z?αβs = Zsδαβ −
1

Nc

∂2E

∂Eα∂u
β
s (q = 0)

,

εαβ∞ = δαβ +
1

Nc

∂2E

∂Eα∂Eβ
.



Linear Response to an Electric Field

If the perturbing potential represents a macroscopic electric field δE:

δV = −eδE0 · r

it is ill-defined in a crystal, because r is not a lattice-periodic operator! it can
however be recast into a well-defined expression using the following trick:

〈ψc|r|ψv〉 =
〈ψc|[HKS, r]|ψv〉

εc − εv
for c 6= v

We can rewrite |ψ̄αv 〉 = Pcrα|ψv〉 as the solution of a linear system:

(HKS − εv)|ψ̄αv 〉 = Pc[HKS, rα]|ψv〉,

where the commutator is well defined and can be easily computed:

[HKS, r] = −h̄
2

m

∂

∂r
+
[
V̂NL, r

]
= −ih̄p

m
+
[
V̂NL, r

]
.

Here V̂NL is the nonlocal part of the pseudopotential.



Calculation of effective charges

Polarization induced by an atomic displacement:

∂Pα

∂uβs (q = 0)
= − e

NcΩ

∫
r

∂n(r)

∂us(q = 0)
dr +

e

Ω
Zsδαβ.

The integral is ill-defined for a crystal with Periodic Boundary Conditions, but we
can use the trick just introduced. The effective charges can be written as:

Z?αβs = Zs +
4

Nc

N/2∑
n=1

〈
ψ̄αn

∣∣∣∣ ∂ψn
∂uβ(q = 0)

〉
.

using the linear response to an atomic perturbation.

Remembering that the Z? are mixed second derivatives of the energy, effective
charges are alternatively computed as the force linearly induced on an atom by an
electric field, using the linear response to an electric field:

Z?αβs = Zs +
4

Nc

N/2∑
n=1

〈
ψn

∣∣∣∣ ∂V

∂uβ(q = 0)

∣∣∣∣ ∂ψn∂Eα

〉



Calculation of dielectric tensor

The linear response to a macroscopic electric field can be calculated using the same
trick as above. In fact, V (r) = eE · r is ill-defined but we need only non-diagonal
matrix elements. The convenient way to solve the linear-response equations is to
iterate over VKS(r) while keeping E fixed:

∂VKS(r)

∂E
=
∂V (r)

∂E
+

∫ (
e2

|r− r′|
+
δvxc(r)

δn(r′)

)
∂n(r′)

∂E
dr′.

Finally:

εαβ∞ = δαβ −
16πe

NcΩ

N/2∑
n=1

〈
ψ̄αn

∣∣∣∣∂ψn∂Eβ

〉
.

In the end, all we need to properly deal with LO-TO splitting in phonons are three
additional linear-response calculations to an electric field

Final note: alternative techniques based on the modern theory of polarizability
(Berry’s phase) exist for the calculation of effective charges.



Inter-atomic force constants in real space

Inter-atomic force constants in real space, Cαβst (R), are obtained by

• calculating C̃αβst (q) on a discrete (n1, n2, n3) grid of q-vectors:

qijk =
i− 1

n1
G1 +

j − 1

n2
G2 +

k − 1

n3
G3, i = 1, .., n1, and the like for j, k;

• Fourier-transforming to the corresponding real-space grid:

C(qijk)⇐⇒ C(Rlmn), Rlmn = lR1 +mR2 + nR3

l = −n1/2, ..., n1/2 and the like for m,n.

The denser the grid of q-vectors, the larger the vectors Rlmn for which the
inter-atomic force constants are calculated.

For non polar system, inter-atomic force constants are short-ranged and require a
moderate number of calculations at different q.



Inter-atomic force constants in real space (2)

In simple semiconductors like Si and Ge, q-point grids like 4× 4× 4 already yield
rather converged force constants in real space. Symmetry is used to reduce the
number of needed linear-response calculations.

Once inter-atomic force constants are known, the entire phonon dispersion at any
q can be straightforwardly calculated.

References: Phonons and related crystal properties from density-functional
perturbation theory, S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi,
Rev. Mod. Phys. 73, 515-562 (2001).

Density-Functional Perturbation Theory, P. Giannozzi and S. Baroni, in Handbook
of Materials Modeling, Vol.1: “Methods and Models”, Editor S. Yip, Volume
Editors: E. Kaxiras, N. Marzari, and B. Trout (Springer, 2005), p.195-214

Thermal Properties of Materials from ab-initio Quasi-Harmonic Phonons, S. Baroni,
P. Giannozzi, and E. Isaev, Rev. Mineral. Geochem. 71, 39-57 (2010)





Interatomic force constants in polar materials

For materials having a TO-LO splitting (e.g.: polar semiconductors), the non-
analytic term in the force constants makes inter-atomic force constants in real
space no longer short-ranged. Fourier-interpolation is no longer possible. Solution:

• Subtract from C̃αβst (qijk) a term that has the same q → 0 limit of the non-

analytic term naC̃αβst (q) (and that is easy to calculate)

• Fourier-transform from reciprocal to real space as for the non-polar case: force
constants in real space are now short-ranged.

• When force constants at a general q are re-calculated from those in real space,
re-add the term removed before the Fourier transform.

A suitable form for the term to be subtracted is the one described in:
X. Gonze et al., Phys. Rev B 50, 13035 (1994)





Electron-phonon interaction

With the change of potential induced by a phonon mode, one can compute the
electron-phonon interaction coefficient λ:

λ =
∑
qν

λqν =
∑
qν

γqν
πh̄N(εF )ω2

qν

where N(εF ) is the DOS at the Fermi level, and for phonon mode ν at wavevector
q:

γqν = 2πωqν

∑
ij

∫
d3k

ΩBZ
|gqν(k, i, j)|2δ(εq,i − εF )δ(εk+q,j − εF ),

gqν(k, i, j) =

(
h̄

2Mωqν

)1/2

〈ψi,k|
∂VKS

∂U (ν)(q)
|ψj,k+q〉.

U(ν) is a displacement along phonon ν. This quantity can be easily calculated
using DFPT.

McMillan formula for the superconducting Tc:

Tc =
ΘD

1.45
exp

[
−1.04(1 + λ)

λ(1− 0.62µ∗)− µ∗

]



Practical phonon calculation in quantum ESPRESSO

First step: scf calculation at equilibrium positions (performed by pw.x)

• Single phonon calculation at finite wave-vector q

– Generate ψk,v and ψk+q,v in the Irreducible Brillouin Zone relative to the
small group of q; Calculate C(q), diagonalize, produce ω(q) and U(q) (code
ph.x)

• Single phonon calculation at Γ wave-vector (q=0)

– Calculate C(q = 0), diagonalize, produce ω(q = 0) and U(q = 0) (code
ph.x)
For polar materials: calculate non-analytical terms that are missing from
C(q = 0) (LO-TO splitting are absent from ω(q = 0)): specify option
epsil=.true. to ph.x (will calculate and store in output file Z∗ and ε∞).

– Impose Acoustic Sum Rule (ASR), add the nonanalytic LO-TO splitting,
calculate cross sections (code dynmat.x)



Practical phonon dispersions calculation

First step as before: scf calculation at equilibrium positions (performed by pw.x)

• Perform many single-phonon calculations on a uniform grid of wave-vectors qi,
including q = 0 (if system is polar, calculate in the latter case Z∗ and ε∞); save
all C(qi) (and Z∗, ε∞) (code ph.x with option ldisp=.true.)

• Perform inverse FFT of the C(qi), obtain interatomic force constants in real
space C(R). For polar materials: a term having the same behaviour for q→ 0
as the non-analytic term is subtracted from C(qi) before the Fourier Transform
and re-added to C(R), so that no problem related to non-analytic behaviour
and related long-rangeness arises in the Fourier Transform (code q2r.x)

• Calculate phonons at any wave-vector, diagonalizing the dynamical matrix:

Dαβ
st (q) =

1√
MsMt

∑
R

Cαβst (R) exp(iq ·R)

using code matdyn.x



The quantum ESPRESSO distribution

quantum ESPRESSO (QE) stands for Quantum opEn-Source Package for
Research in Electronic Structure, Simulation, and Optimization

QE is a distribution (an integrated suite) of software for first-principle simulations,
i.e., atomistic calculations based on electronic structure, using density-functional
theory, a plane-wave basis set, pseudopotentials. Main goals of QE are

• innovation in theoretical methods and numerical algorithms

• efficiency on modern computer architectures

A great effort is also devoted to user friendliness and to the formation of a users’
and developers’ community

QE exists since almost 20 years, resulting from the merge of pre-existing packages;
some core components have been under development for ∼ 30 years

QE is freely available under the terms of the GNU General Public License



quantum ESPRESSO contributors

QE receives contributions from individuals and institutions worldwide (red dots)

QE is one of the community codes of H2020 project
MaX – Materials at the Exascale



quantum ESPRESSO Foundation

So: who “owns” QE ... ?

... the quantum ESPRESSO Foundation: a non–
profit (“limited by guarantee”) company, based in
the UK, soon moving to Slovenia, that

• coordinates and supports research, education, and outreach within the QE
community

• owns the trademarks and protects the open-source character of QE

• raises funds to foster the QE project and its development

Current members of the Foundation:
SISSA, EPFL, ICTP, Cineca, Texas University at Austin



Developers’ and users’ community: factoids

• Slack developers’ channel: ∼ 30 active members, 38000+ messages since April
2020 (when the channel was opened)

• 20000 commits since the first release under revision control software (first CVS,
then SVN, now git)

• 1330 “merge requests” accepted on GitLab (https://gitlab.com/QEF/q-e)
since Dec. 2017

• Almost 40 Schools or tutorials since 2002 (blue dots in the map two slides
behind this), attended by ∼ 1400 users before the pandemic

• 1100+ applications for the recent (17-28 May 2021) MaX “e-School”

• Almost 15000 citations of the papers documenting QE



This is the main documenting paper (2009). After 8 years and ∼ 6000 citations ...



... an updated paper was published in 2017. The latest paper ...



... deals with the results of the MaX project.

Time evolution and geographic distribution of citations:



Requirements on effective software
for quantum simulations at the nanoscale

• Diffusion of first-principle techniques among non-specialists requires software
that is easy to use and (reasonably) bug-free and error-proof

• Scientific ethics requires that results should be reproducible and algorithms
susceptible of validation

• Complex problems require a mix of solutions coming from different approaches
and methods: software should be interoperable with other software

• Introducing innovation requires new ideas to materialize into new algorithms
through codes: software should be easy to extend and to improve

• Challenging calculations stress the limits of available computer power: software
should be fast and efficient

• Finally, software must be maintainable!



On usability and reliability

• Usability:
simple text input along with graphical interfaces, provided by multiple sources;
a large and ever-increasing number of checks on input and on results.

• Reproducibility:
text input is very stable in the years; all past QE versions are available to
everybody; automated tests (see next) are run on different hardware and run-
time conditions.

• Verification (correctness of results):
large number of tests, automatically executed every night after changes have
been made. See: http://bionano2.dimi.uniud.it:8010/#/console

• Validation (precision and accuracy of the physical model):
See e.g. Reproducibility in density-functional theory calculations of solids,
K. Lejaeghere et multis aliis, Science 351 (6280), aad3000 (2016)
Tests precision of the algorithm (pseudopotentials vs all-electron DFT), not
physical accuracy of results. Much more work is available, also on accuracy.



Requirements on effective software
for quantum simulations at the nanoscale

• Diffusion of first-principle techniques among non-specialists requires software
that is easy to use and (reasonably) bug-free and error-proof

• Scientific ethics requires that results should be reproducible and algorithms
susceptible of validation

• Complex problems require a mix of solutions coming from different approaches
and methods: software should be interoperable with other software

• Introducing innovation requires new ideas to materialize into new algorithms
through codes: software should be easy to extend and to improve

• Challenging calculations stress the limits of available computer power: software
should be fast and efficient

• Finally, software must be maintainable!



Solutions for interoperability

• I/O with schema-based, standard-compliant XML file, plus binary files
(optionally in portable HDF5 format) for large records (e.g. wavefunctions,
charge density). Allows easy parsing and transferral of data both inside QE and
between QE and external software.

• More modular code and parallelization logic. Allows to call QE code as a library
and to execute it inside a MPI communicator provided by the external software

An incomplete list of interoperable applications:

• QM-MM, with LAMMPS for the MM part (Comput. Phys. Commun. 195, 191
(2015)), also available with MPI communications

• Advanced minimization algorithms (under development)

• Path-Integral Molecular Dynamics with i-Pi (CPC 185, 1019 (2014))

• High-throughput computing with AiiDA (Comput. Mater. Sci. 111 218 (2016))





Requirements on effective software
for quantum simulations at the nanoscale

• Diffusion of first-principle techniques among non-specialists requires software
that is easy to use and (reasonably) bug-free and error-proof

• Scientific ethics requires that results should be reproducible and algorithms
susceptible of validation

• Complex problems require a mix of solutions coming from different approaches
and methods: software should be interoperable with other software

• Introducing innovation requires new ideas to materialize into new algorithms
through codes: software should be easy to extend and to improve

• Challenging calculations stress the limits of available computer power: software
should be fast and efficient

• Finally, software must be maintainable!



Major recent or notable QE improvements and extensions

Mostly in the field of “advanced functionals”:

• New methods for van-der-Waals-bonded systems:

– non-local functionals (“vdw-DF”)
– semi-empirical corrections: Grimme’s DFT+D2, DFT+D3
– non-so-empirical corrections; Tkatchenko-Scheffler, exchange-hole dipole

moment model (XDM), many-body dispersions

• Improved functionals:

– Adaptively Compressed Exchange and Selected Columns of Density Matrix
localization for hybrid functionals (I. Carnimeo, S. Baroni, P. Giannozzi,
Electron. Struct. 1, 015009 (2019)

– Molecular dynamics with hybrid functionals using localized Wannier functions
– Usable meta-GGA (SCAN) functionals
– Extended Hubbard functionals with intersite terms: DFT+U+V

Note that all functionals from libxc can now be used in QE



Major recent or notable QE improvements and extensions II

Mostly in the field of “linear response”:

• EPW, of course!

• Phonons with Ultrasoft pseudopotentials and for noncolinear magnetism

• Phonons with DFT+U and with van der Waals (vdW-DF) functionals

• Time-dependent extension to DFT: TD-DFPT, for calculation of

– Electronic excitations
– Electron energy-loss spectroscopy (EELS)
– Magnetic excitations (magnons)

• Linear-response calculation of Hubbard U parameters

• Phonon-induced electron self-energy (contributed by Jae-Mo Lihm)



Requirements on effective software
for quantum simulations at the nanoscale

• Diffusion of first-principle techniques among non-specialists requires software
that is easy to use and (reasonably) bug-free and error-proof
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should be fast and efficient

• Finally, software must be maintainable!



Parallelization towards the exascale

Scalability of realistic calculations on up to tens of thousands cores, using all
available OpenMP and MPI parallelization levels, was demonstrated in the past.

Careful optimization of nonscalable RAM and computations required!
Scalability strongly depends upon the kind and size of system!

However: Accelerated hybrid architectures such as NVidia GPU’s are the current
“big thing” in high-performance computing. Problems:

• Large code rewriting needed to obtain interesting performances

• Maintainability of the code becomes problematic

Solutions:

• Current: rewrite selected computational kernels using CUDA Fortran. Integrates
much better into the Fortran-based code of QE.

• Future: portable code with OpenMP v.5 or OpenACC



Current performances on Nvidia GPUs
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